Table 3. Hydrogen-bond geometry (\AA and ${ }^{\circ}$)

$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$	0 \cdots	O $\cdots \mathrm{H}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{O}\left(3^{\text {² }}\right.$	2.776 (5)	1.99 (9)	136 (7)
$\mathrm{O}(7)-\mathrm{H}(71) \cdots \mathrm{O}\left(3^{\text {ii }}\right)$	2.839 (5)	1.87 (7)	175 (6)
$\mathrm{O}(8)-\mathrm{H}(8) \cdots \mathrm{O}\left(3^{\text {iii) }}\right.$)	2.768 (6)	1.82 (6)	164 (5)
$\mathrm{O}(8)-\mathrm{H}(81) \cdots \mathrm{O}(9)$	2.836 (6)	$2 \cdot 20$ (5)	122 (5)
$\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}\left(\mathbf{6}^{\prime \prime}\right)$	2.796 (6)	1.99 (7)	139 (8)
$\mathrm{O}(9)-\mathrm{H}(91) \cdots \mathrm{O}\left(3^{\prime \prime}\right)$	2.780 (6)	1.81 (5)	174 (5)

Symmetry code: (i) $x+0.5,1 \cdot 5-y, z-1$; (ii) $x, y, z-1$; (iii) $1+x, y, z-1$; (iv) $1-x, 1-y, 1-z$.
molecules and is therefore formally pentacoordinated. A similar type of hydrogen bonding was earlier observed, e.g. in trisodium D-2-phosphoglycerate hexahydrate (Lis, 1985).

Financial support was received from project R.P.10.

References

Baer, E. (1952). Biochemical Preparation, Vol. II, pp. 25-30. New York: John Wiley.
Baer, E. \& Fischer, H. O. L. (1949). J. Biol. Chem. 180, 145-154.

Benkovic, S. J. \& Schray, K. J. (1968). Biochemistry, 7, 40904096.

Bergstrom, R., Satyshur, K. \& Sundaralingam, M. (1981). Acta Cryst. B37, 254-258.
Coggon, P. \& McPhail, A. T. (1972). J. Chem. Soc. Chem. Commun. pp. 91-92.
Glowiak, T. \& Wnek, I. (1985). Acta Cryst, C41, 324-327.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Jones, P. G., Sheldrick, G. M., Kirby, A. J. \& Abell, K. W. Y. (1984). Acta Cryst. C40, 550-552.

Katti, S. K., Hosur, M. V. \& Viswamitra, M. A. (1981). Acta Cryst. B37, 834-838.
Lehninger, A. L. (1971). Bioenergetics. Menlopark, CA: Benjamin.
Lis, T. (1985). Acta Cryst. C41, 1578-1580.
Lis, T. (1987). Acta Cryst. C43, 1898-1900.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Starynowicz, P., Lis T. \& Weichsel, A. (1986). Collected Abstracts, p.67. Pre-Meeting Symposium on Organic Crystal Chemistry, Poznań-Rydzyna, 1986.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Weichsel, A. \& Lis, T. (1989). Acta Cryst. C45, 1177-1180.
Weichsel, A. \& Lis, T. (1990). Acta Cryst. C46, 472-476.
Weichsel, A., Lis, T. \& Kuczek, M. (1989). Carbohydr. Res. 194, 63-70.

Crystal Chemistry of cyclo-Hexaphosphates. IX. Structure of Tetraammonium Dimanganese cyclo-Hexaphosphate Oxalate Hexahydrate

By M. T. Averbuch-Pouchot and A. Durif*
Laboratoire de Cristallographie, associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 19 June 1989; accepted 7 September 1989)

Abstract

Mn}_{2}\left(\mathrm{NH}_{4}\right)_{4}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 851.966, triclinic, $\quad P \overline{1}, \quad a=9.747$ (3), $\quad b=$ 9.751 (3),$\quad c=7.689$ (3) $\AA, \quad \alpha=99.92$ (5), $\quad \beta=$ $105 \cdot 88$ (5), $\gamma=100 \cdot 08$ (5) ${ }^{\circ}, V=673 \cdot 1 \AA^{3}, Z=1, D_{x}$ $=2.101 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $1.465 \mathrm{~mm}^{-1}, \quad F(000)=432, T=294 \mathrm{~K}$, final $R=$ 0.030 for 2577 reflections. The atomic arrangement is built up by infinite ribbons of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions and MnO_{6} octahedra spreading parallel to the b axis. These ribbons are themselves interconnected by the oxalic groups located between two MnO_{6} octahedra belonging to two different ribbons. The hydrogenbond scheme is described.

Introduction. Phosphates with two different phosphoric anions of different degrees of condensation

[^0]are becoming more and more familiar. A review of this type of compound has recently been reported by one of us (Averbuch-Pouchot, 1985). But up to now the coexistence in an atomic arrangement of a condensed phosphoric anion with a non-phosphoric one has not been reported. In this work we describe what we believe is the first example of such a compound: manganese ammonium cyclo-hexaphosphate oxalate hexahydrate, $\mathrm{Mn}_{2}\left(\mathrm{NH}_{4}\right)_{4}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$. In fact, in a good number of compounds (Boudjada, 1985), a condensed phosphoric anion coexists with a $\mathrm{Te}(\mathrm{OH})_{6}$ group but due to the neutrality of the telluric acid they cannot be considered as mixedanion salts but as adducts.

Experimental. Crystals of the title compound have been prepared by slow diffusion of an aqueous solution of manganese oxalate into an aqueous solution
© 1990 International Union of Crystallography
of ammonium cyclo-hexaphosphate. After some days at room temperature, crystals of the title compound appeared with various morphologies; short, stout multifaceted prisms, sometimes elongated, calcitelike or thick diamond-like plates. They are very slightly water soluble and stable for months at room temperature.

Crystal size: $0.16 \times 0.16 \times 0.11 \mathrm{~mm}$. Density not measured. Philips PW 1100 diffractometer, graphite monochromator. 20 reflections ($11.0<\theta<13.5^{\circ}$) for refining unit-cell dimensions. ω scan; scan width $1 \cdot 20^{\circ}$; scan speed $0.02^{\circ} \mathrm{s}^{-1}$. Total background measuring time 10 s .3187 reflections collected ($3<\theta<$ $\left.30^{\circ}\right) ; \pm h, \pm k, l ; h_{\max }=13, k_{\max }=13, l_{\max }=10$. Two orientation and intensity control reflections (023 and $0 \overline{2} \overline{3})$ measured every four hours without any significant variation. 2951 reflections obtained after averaging Friedel pairs ($R_{\text {int }}=0.013$). Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods with MULTAN77 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1977). H atoms located by difference Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F), isotropic for \mathbf{H} atoms. Unit weights. Final refinements with 2577 reflections corresponding to $I>4 \sigma_{I}$. Final $R=0.030$ ($w R=0.034$), $S=0.896$, max. $\Delta / \sigma=0.06$, max. peak height in the final difference Fourier synthesis = $0.429 \mathrm{e} \AA^{-3}$. Secondary extinction refined according to Stout \& Jensen (1968) to $g=6.3 \times 10^{-7}$. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAX II. For the complete set of 2951 reflections, the R value is 0.035 .

Discussion. Table 1 reports the final atomic coordinates.*

The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion develops around the inversion centre located at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and so is built by only three independent PO_{4} tetrahedra. As is commonly observed for $\mathrm{P}_{6} \mathrm{O}_{18}$ anions with $\overline{1}$ internal symmetry, the ring is significantly distorted. The $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles vary between 93.14 and 116.13°. This distortion is comparatively much less important than that observed in some cyclo-hexaphosphates. In $\mathrm{Cs}_{6} \mathrm{P}_{6} \mathrm{O}_{18} .6 \mathrm{H}_{2} \mathrm{O}$ for instance, the same angles spread between 93.2 and 145.5° (Averbuch-Pouchot \& Durif, 1989). In spite of this distortion the local arrangement observed for the PO_{4} tetrahedra ($\mathrm{P}-\mathrm{O}$

[^1]Table 1. Final atomic coordinates and $B_{\text {eq }}$ with e.s.d.'s in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Mn	0.84208 (5)	$0 \cdot 11847$ (4)	0.70887 (6)	$1 \cdot 190$ (7)
P(1)	0.17081 (7)	0.40931 (7)	0.37697 (9)	1.09 (1)
$\mathrm{P}(2)$	0.63293 (8)	-0.21426 (7)	0.6301 (1)	1.19 (1)
P(3)	0.37492 (8)	-0.35663 (7)	0.3171 (1)	$1 \cdot 20$ (1)
$\mathrm{O}(E 11)$	0.0394 (2)	0.4170 (2)	0.2285 (3)	1.68 (4)
$\mathrm{O}(E 12)$	$0 \cdot 1536$ (2)	$0 \cdot 3809$ (2)	0.5538 (3)	1.83 (4)
$\mathrm{O}(\mathrm{L12})$	0.7575 (2)	$0 \cdot 7064$ (2)	0.7169 (3)	1.48 (4)
$\mathrm{O}(\mathrm{L13)}$	0.7060 (2)	0.4459 (2)	0.5685 (3)	1.73 (4)
$\mathrm{O}(E 21)$	$0 \cdot 7029$ (3)	-0.0871 (2)	0.5761 (3)	2.05 (5)
$\mathrm{O}(\mathrm{E} 22)$	0.5459 (2)	-0.1985 (3)	0.7583 (3)	2.24 (5)
O(L23)	$0 \cdot 5419$ (2)	-0.3315 (2)	0.4408 (3)	1.52 (4)
O(E31)	0.3591 (3)	-0.4438 (3)	0.1318 (3)	2.04 (5)
$\mathrm{O}(E 32)$	0.3339 (2)	-0.2169 (2)	0.3301 (4)	$2 \cdot 28$ (5)
$\mathrm{O}(1)$	0.0348 (2)	0.0210 (2)	0.7936 (3)	1.69 (4)
O(2)	0.1451 (2)	0.9156 (2)	0.0101 (3)	1.84 (4)
$\mathrm{O}(W 1)$	0.9075 (3)	$0 \cdot 1655$ (3)	0.4750 (3)	2.09 (5)
O(W2)	-0.0020 (3)	0.6739 (2)	0.1387 (3)	1.92 (4)
O (W3)	0.5653 (4)	0.9481 (3)	0.1881 (5)	5.34 (8)
N(1)	$0 \cdot 3020$ (3)	$0 \cdot 2850$ (3)	0.8798 (4)	2.36 (6)
N(2)	0.7216 (3)	0.2989 (4)	0.1666 (4)	2.71 (6)
C	$0 \cdot 9476$ (3)	0.0192 (3)	0.0564 (4)	$1 \cdot 27$ (5)

distances and $\mathrm{P}-\mathrm{O}-\mathrm{P}$ or $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles as well as P - P distances) are in accordance with values generally observed in condensed phosphoric anions. The main geometrical features of this ring are reported in Table 2.

The oxalic group, $\mathrm{C}_{2} \mathrm{O}_{4}$, is centrosymmetric and located around the inversion centre at $(0,0,0)$. All its O atoms take part in the coordination of the Mn atom. The coordination polyhedron of this Mn atom is a distorted octahedron built up by two O atoms shared with the phosphoric ring, two water molecules and two O atoms belonging to the oxalic group. The main geometrical features of this coordination polyhedron are reported in Table 2.

As shown in Fig. 1, this atomic arrangement can easily be described as a succession of ribbons parallel to the \mathbf{b} direction and built up by the phosphoric ring anions and the managanese octahedra. These ribbons are themselves interconnected through the oxalic groups. Due to this connection of the ribbons by the organic groups, an unusual situation occurs around the inversion centre located at the origin of the unit cell. Two manganese octahedra are related by this inversion centre and a very short $\mathrm{O}-\mathrm{O}$ distance $[\mathrm{O}(1)-\mathrm{O}(2)=2.232 \AA]$ is observed between the two polyhedra. This situation is depicted schematically in Fig. 2.
Within a distance of $3.5 \AA$ the two ammonium groups $\mathrm{N}(1)$ and $\mathrm{N}(2)$ are surrounded by nine and seven O atoms respectively. The $\mathrm{N}-\mathrm{O}$ distances in these two polyhedra are reported in Table 2.

The three-dimensional network of hydrogen bonds interconnecting the components of this atomic arrangement is described in Table 2. As is usual in compounds involving a condensed phosphoric anion,

Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ in the atomic arrangement of $\mathrm{Mn}_{2}\left(\mathrm{NH}_{4}\right)_{4}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with e.s.d.'s in parentheses

The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion

The MnO_{6} octahedron

Mn	$\mathrm{O}(E 21)$	O (E32)	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(W 1)$	$\mathrm{O}(W 2)$
$\mathrm{O}(E 21)$	2.118 (2)	3.035 (3)	$3 \cdot 101$ (3)	$3 \cdot 136$ (3)	$3 \cdot 230$ (3)	4.346 (3)
$\mathrm{O}(\mathrm{E} 32)$	92.47 (9)	2.085 (2)	4.316 (3)	$3 \cdot 249$ (3)	3-181 (4)	$3 \cdot 102$ (3)
$\mathrm{O}(1)$	90.62 (8)	171.91 (9)	$2 \cdot 242$ (2)	$2 \cdot 692$ (3)	$3 \cdot 108$ (3)	3.019 (3)
$\mathrm{O}(2)$	92.69 (9)	98.1 (1)	74.29 (9)	$2 \cdot 216$ (2)	4.314 (3)	2.997 (3)
$\mathrm{O}(W 1)$	98.12 (9)	97.1 (1)	89.86 (9)	160.94 (8)	$2 \cdot 158$ (3)	2.918 (3)
$\mathrm{O}(W 2)$	$175 \cdot 28$ (9)	91.81 (8)	84.88 (8)	84.74 (8)	83.31 (8)	$2 \cdot 231$ (2)

The $\mathrm{NH}_{4} \mathrm{O}_{n}$ polyhedra

$\mathrm{N}(1)-\mathrm{O}(E 12)$	$2.923(4)$
$\mathrm{N}(1)-\mathrm{O}(L 12)$	$3.297(4)$
$\mathrm{N}(1)-\mathrm{O}(E 22)$	$3.104(4)$
$\mathrm{N}(1)-\mathrm{O}(L 23)$	$3.285(4)$
$\mathrm{N}(1)-\mathrm{O}(E 31)$	$2.861(4)$
$\mathrm{N}(1)-\mathrm{O}(E 31)$	$3.426(4)$
$\mathrm{N}(1)-\mathrm{O}(1)$	$3.158(3)$
$\mathrm{N}(1)-\mathrm{O}(W 2)$	$2.989(4)$
$\mathrm{N}(1)-\mathrm{O}(W 3)$	2.8460

The $\mathrm{C}_{2} \mathrm{O}_{4}$ group

$\mathrm{C}-\mathrm{C}$	$1.564(4)$	$\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(2)$	$126.4(3)$
$\mathrm{C}-\mathrm{O}(1)$	$1.259(4)$	$\mathrm{C}-\mathrm{C}-\mathrm{O}(1)$	$116.0(3)$
$\mathrm{C}-\mathrm{O}(2)$	$1.242(4)$	$\mathrm{C}-\mathrm{C}-\mathrm{O}(2)$	$117.7(3)$

The hydrogen bonds

$\mathrm{O}(\mathrm{N})-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}(\mathrm{N})-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}(\mathrm{N})-\mathrm{O}$	$\mathrm{O}(\mathrm{N})-\mathrm{N} \cdots \mathrm{O}$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N} 1) \cdots \mathrm{O}(W 3)$	$0.89(5)$	$1.99(5)$	$2.846(5)$	$160(4)$
$\mathrm{N}(1)-\mathrm{H}(2 \mathrm{~N} 1) \cdots \mathrm{O}(E 12)$	$0.80(6)$	$2.22(5)$	$2.923(4)$	$146(5)$
$\mathrm{N}(1)-\mathrm{H}(3 \mathrm{~N} 1) \cdots \mathrm{O}(1)$	$0.90(6)$	$2.36(5)$	$3.158(3)$	$148(6)$
$\mathrm{N}(1)-\mathrm{H}(4 \mathrm{~N} 1) \cdots \mathrm{O}(E 31)$	$0.94(4)$	$1.98(4)$	$2.861(4)$	$154(4)$
$\mathrm{N}(2)-\mathrm{H}(1 \mathrm{~N} 2) \cdots \mathrm{O}(2)$	$0.80(6)$	$2.20(6)$	$2.974(4)$	$163(6)$
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N} 2) \cdots \mathrm{O}(E 31)$	$0.81(6)$	$2.11(6)$	$2.898(4)$	$163(5)$
$\mathrm{N}(2)-\mathrm{H}(3 \mathrm{~N} 2) \cdots \mathrm{O}(E 22)$	$0.89(5)$	$1.99(5)$	$2.867(4)$	$169(4)$
$\mathrm{N}(2)-\mathrm{H}(4 \mathrm{~N} 2) \cdots \mathrm{O}(E 11)$	$0.96(4)$	$2.35(6)$	$2.983(4)$	$123(4)$
$\mathrm{O}(W 1)-\mathrm{H}(1 W 1) \cdots \mathrm{O}(E 12)$	$0.89(4)$	$1.86(4)$	$2.745(3)$	$172(4)$
$\mathrm{O}(W 1)-\mathrm{H}(2 W 1) \cdots \mathrm{O}(1)$	$0.84(5)$	$1.92(5)$	$2.754(3)$	$174(5)$
$\mathrm{O}(W 2)-\mathrm{H}(1 W 2) \cdots \mathrm{O}(E 11)$	$0.63(5)$	$2.09(5)$	$2.712(3)$	$168(6)$

Table 2 (cont.)

$\mathrm{O}(\mathrm{N})-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}(\mathrm{N})-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}(\mathrm{N})-\mathrm{O}$	$\mathrm{O}(\mathrm{N})-\mathrm{N} \cdots \mathrm{O}$
$\mathrm{O}(W 2)-\mathrm{H}(2 W 2) \cdots \mathrm{O}(E 11)$	$0.78(5)$	$2.01(5)$	$2.778(3)$	$168(4)$
$\mathrm{O}(W 3)-\mathrm{H}(1 W 3) \cdots \mathrm{O}(E 22)$	$0.93(6)$	$1.92(6)$	$2.852(4)$	$178(5)$
$\mathrm{O}(W 3)-\mathrm{H}(2 W 3) \cdots \mathrm{O}(E 21)$	$0.96(5)$	$2.10(6)$	$3.023(4)$	$161(5)$

Fig. 1. Projection of the atomic arrangement of $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mn}_{2}\left(\mathrm{P}_{6} \mathrm{O}_{18}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ along the c axis.

Fig. 2. Schematic representation of the situation around the inversion centre at ($0,0,0$). The two related MnO_{6} octahedra are represented by hexagons.
the bonding O atoms $[\mathrm{O}(L)]$ do not take part in such a network. The drawings were made with STRUPLO (Fischer, 1985).

References

Averbuch-Pouchot, M. T. (1985). Z. Anorg. Allg. Chem. 529, 143-150.
Averbuch-Pouchot, M. T. \& Durif, A. (1989). C. R. Acad. Sci. 308 II, 1699-1702.

Boudjada, N. (1985). Thesis, Grenoble Univ., France.
Enraf-Nonius (1977). Structure Determination Package, version RSX11M. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stout, G. H. \& Jensen, L. H. (1968). In X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1990). C46, 968-970

Crystal Chemistry of cyclo-Hexaphosphates. X. Structure of Dicalcium Dilithium cyclo-Hexaphosphate Octahydrate

By M. T. Averbuch-Pouchot and A. Durif
Laboratoire de Cristallographie, associé à l'Universitè J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 5 August 1989; accepted 7 September 1989)

Abstract. $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}, M_{r}=711 \cdot 984$, triclinic, $P \overline{1}, a=7.767$ (2), $b=10.144$ (3), $c=7.225$ (2) \AA, α $=105.17(4), \quad \beta=102.76(4), \quad \gamma=84.95(4)^{\circ} ; \quad V=$ $535.6 \AA^{3}, \quad D_{x}=2.207 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K $\bar{\alpha})=$ $0.7107 \AA, \mu=1.082 \mathrm{~mm}^{-1}, F(000)=360$, room temperature, final $R=0.023$ for 2764 reflections. The atomic arrangement can be described as successive layers of planes made by LiO_{6} octahedra sharing corners with the $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions. These planes are interconnected in a three-dimensional manner by the CaO_{7} polyhedra and the hydrogen bonds. The calcium-sodium salt is isotypic.

Introduction. cyclo-Hexaphosphates of monovalentdivalent cations belong to various structural types and have very different degrees of hydration. During a systematic investigation of this type of compound, we previously reported the existence and described the crystal structures of $\mathrm{Mn}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, 1989) and $\mathrm{Cd}_{2} \mathrm{Na}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .14 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, 1990). In the present work we describe the chemical preparation and crystal structure of a new compound of this family, $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$. The calcium-sodium salt $\mathrm{Ca}_{2} \mathrm{Na}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$ is isotypic with the following unit-cell dimensions: $a=8.031$ (4), $b=10.296$ (5), $c=7 \cdot 279$ (3) $\AA, \alpha=105.69(5), \beta=103 \cdot 27(5), \gamma=$ $85 \cdot 30(5)^{\circ}$. Its preparation is similar to that described for the title compound.

Experimental. Crystals of the title compound were prepared by adding solid gypsum to an aqueous solution of lithium cyclo-hexaphosphate. After some days of evaporation at room temperature, crystals of $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ appeared as elongated triclinic prisms, sparingly soluble in water. The compound is stable for months at room temperature.

Crystal size: $0.18 \times 0.22 \times 0.12 \mathrm{~mm}$. Density not measured. Phillips PW1100 diffractometer, graphite monochromator. 15 reflections ($13.0<\theta<17.0^{\circ}$) for refining unit-cell dimensions. $\omega / 2 \theta$ scan, scan width: $1 \cdot 20^{\circ}$, scan speed: $0.02^{\circ} \mathrm{s}^{-1}$. Total background measuring time: 10 s. 3827 reflections collected ($3<\theta<$ $\left.35^{\circ}\right) ; \pm h, \pm k, l ; h_{\max }=12, k_{\max }=16, l_{\max }=10$. Two orientation and intensity control reflections ($\overline{1} 2 \overline{1}$ and $1 \overline{2} 1)$ measured every three hours without any significant variation. 3556 reflections obtained after averaging Friedel pairs ($R_{\text {int }}=0.01$). Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods (MULTAN77; Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1977). H atoms located by difference Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F), isotropic for H atoms. Unit weights. Final refinements with 2764 reflections corresponding to $F>3 \sigma_{F}$. Final $R=0.023 \quad(w R=$ 0.028), $S=0.609$, max. $\Delta / \sigma=0.03$, max. peak height in the final difference Fourier synthesis = $0.552 \mathrm{e} \AA^{-3}$. No secondary-extinction correction. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAX II.

Discussion. Table 1 reports the final atomic coordinates.* The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion has $\overline{1}$ internal symmetry and so is built by three independent P atoms. As is commonly observed for six-membered

[^2]
[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and bonds and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52641 (25 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52642 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1990 International Union of Crystallography

